Velocity inversion in cross-hole seismic tomography by counter-propagation neural network, genetic algorithm and evolutionary programming techniques

نویسندگان

  • Sankar Kumar Nath
  • Subrata Chakraborty
  • Sanjiv Kumar Singh
  • Nilanjan Ganguly
چکیده

The disadvantages of conventional seismic tomographic ray tracing and inversion by calculus-based techniques include the assumption of a single ray path for each source– receiver pair, the non-inclusion of head waves, long computation times, and the difficulty in finding ray paths in a complicated velocity distribution. A ray-tracing algorithm is therefore developed using the reciprocity principle and dynamic programming approach. This robust forward calculation routine is subsequently used for the cross-hole seismic velocity inversion. Seismic transmission tomography can be considered to be a function approximation problem; that is, of mapping the traveltime vector to the velocity vector. This falls under the purview of pattern classification problems, so we propose a forward-only counter-propagation neural network (CPNN) technique for the tomographic imaging of the subsurface. The limitation of neural networks, however, lies in the requirement of exhaustive training for its use in routine interpretation. Since finding the optimal solution, sometimes from poor initial models, is the ultimate goal, global optimization and search techniques such as simulated evolution are also implemented in the cross-well traveltime tomography. Genetic algorithms (GA), evolution strategies and evolutionary programming (EP) are the main avenues of research in simulated evolution. Part of this investigation therefore deals with GA and EP schemes for tomographic applications. In the present work on simulated evolution, a new genetic operator called ‘region-growing mutation’ is introduced to speed up the search process. The potential of the forward-only CPNN, GA and EP methods is demonstrated in three synthetic examples. Velocity tomograms of the first model present plausible images of a diagonally orientated velocity contrast bounding two constant-velocity areas by both the CPNN and GA schemes, but the EP scheme could not image the model completely. In the second case, while GA and EP schemes generated an accurate velocity distribution of a faulted layer in a homogeneous background, the CPNN scheme overestimated the vertical displacement of the fault. One can easily identify five voids in a coal seam from the GA-constructed tomogram of the third synthetic model, but the CPNN and EP schemes could not replicate the model. The performances of these methods are subsequently tested in a real field setting at Dhandadih Colliery, Raniganj Coalfields, West Bengal, India. First arrival traveltime inversion by these algorithms from 225 seismic traces revealed a P-wave velocity distribution from 1.0 to 2.5 km s−1. A low-velocity zone (1.0 km s−1 ), the position of a suspected gallery in the Jambad Top coal seam, could be successfully delineated by CPNN, GA and EP schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

Prediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms

Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network

Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999